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Abstract
Work stealing is the method of choice for load balancing
in task parallel programming languages and frameworks.
Yet despite considerable effort invested in optimizing work
stealing task queues, existing algorithms issue a costly mem-
ory fence when removing a task, and these fences are be-
lieved to be necessary for correctness.

This paper refutes this belief, demonstrating work steal-
ing algorithms in which a worker does not issue a memory
fence for microarchitectures with a bounded total store or-
dering (TSO) memory model. Bounded TSO is a novel re-
striction of TSO – capturing mainstream x86 and SPARC
TSO processors – that bounds the number of stores a load
can be reordered with.

Our algorithms eliminate the memory fence penalty, im-
proving the running time of a suite of parallel benchmarks
on modern x86 multicore processors by 7%−11% on aver-
age (and up to 23%), compared to the Cilk and Chase-Lev
work stealing queues.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

Keywords work stealing; memory fences; TSO

1. Introduction
The task-based parallel programming model – which ex-
poses parallelism by expressing a computation as a set of
tasks that can be scheduled in parallel – is used in many pro-
gramming languages and frameworks, as well as in (multi-
core) MapReduce. These implementations of task-based par-
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Figure 1: Single threaded execution time of several widely used
CilkPlus benchmarks when not issuing a memory fence on task
removal, normalized to the standard CilkPlus runtime on an Intel
Haswell (Core i7-4770) 3.4 GHz processor.

allelism dominantly employ work stealing for dynamic load
balancing of the executed tasks [3, 11, 13, 20, 27, 32, 33].

In work stealing, each worker thread has a queue of tasks
from which it continuously removes the next task to execute.
While executing a task the worker might create and add new
tasks to its queue. If a worker’s queue empties, the worker
becomes a thief and tries to steal a task from another worker.

Today’s work stealing synchronization protocols [4, 9,
14, 20] are based on the flag principle [23]. The worker pub-
lishes the task it is about to take, and then checks whether
a thief intends to steal the same task. If not, the worker can
safely take the task because any future thief will observe its
publication and avoid stealing the task. But for this reason-
ing to hold, the worker must issue a costly memory fence in-
struction to prevent the checking load from being reordered
before the publishing store. As Figure 1 shows, this fence
can account for up to ≈ 25% of execution time.

It would thus seem that the worker’s memory fence is
unavoidable. In fact, Attiya et al.’s “laws of order” [10] are
sometimes interpreted as saying just this [8]. In truth, how-
ever, the “laws of order” rely on certain assumptions [10]
and may not hold when these underlying assumptions are
invalidated – as they are in this work.

This paper demonstrates that linearizable fence-free work
stealing is possible on mainstream multicore architectures
with a total store ordering (TSO [1, 34]) memory model,



such as x86 and SPARC. Our insight is that these proces-
sors’ TSO implementation only allows bounded store/load
reordering (i.e., a load can be reordered with at most S prior
stores), and that this bound can be used by a thief instead of
relying on the worker’s fence to verify that the worker could
not have already removed the task it is stealing.

1.1 Bounded TSO
This paper introduces the bounded TSO memory model,
which places a fixed bound on the size of the abstract store
buffer [34] that models store/load reordering in TSO. This is
the only type of reordering possible in TSO: a stored value
gets buffered in the store buffer before reaching memory,
allowing a later load from a different address to be satisfied
from memory before the earlier store is written to memory.

We show that the mainstream TSO architectures – x86
and SPARC – implement bounded TSO (except for a corner
case when there are consecutive stores to the same location,
which can be prevented in software), and describe how to
determine the reordering bound in practice.

1.2 Fence-free work stealing using bounded reordering
In a typical work stealing task queue, the worker works its
way from the tail of the queue to its head and the thief works
from the head towards the tail. The worker’s fence removes
uncertainty about the worker’s position in the task queue by
draining its store buffer.

Our insight is that if the worker does not issue a memory
fence, a thief can use knowledge of the store buffer’s capac-
ity to detect when it can safely steal a task by bounding the
number of task removals hidden in the worker’s store buffer.
To see this, consider the system’s state after a worker works
its way through tasks #10, #9 and #8 – without issuing any
fences – on a processor with a 4-entry store buffer:

stores by worker
in memory: about to take task #10 (earliest store)

about to take task #9
buffered some store
stores: about to take task #8

another store (latest store)

If a thief now reads from memory it will only see that
the worker is about to take task #10. But the thief knows
it is missing at most 4 worker announcements due to store
buffering, implying that the furthest store the worker could
have issued is “about to take task #6.” Therefore, if the thief
intends to steal task i < #6, it is assured that the worker has
not taken this task yet.

Based on this idea, we describe the FF-THE and FF-CL
algorithms, fence-free variants of Cilk’s THE algorithm [20]
and of the Chase-Lev algorithm [14]. In FF-THE and FF-
CL, if a thief remains uncertain about whether it can safely
steal – say, if it intends to steal task #6 above – it refuses
to steal and returns a special ABORT value instead. In doing

so we are relaxing the work stealing semantics, but unlike
previous semantic relaxations [31], our relaxation maintains
the queue’s safety and does not allow a task to be removed
twice – an intolerable behavior for many applications.

We further show that work stealing can be implemented
fence-free without relaxing its semantics. We describe the
THEP algorithm, which resolves the uncertainty in FF-THE
using an echo mechanism. When a thief cannot steal due to
uncertainty, it writes a value to memory and waits for the
worker to echo it back, at which point the thief is guaranteed
that the worker has observed its presence and will correctly
synchronize with it if necessary. The thief does not risk
waiting indefinitely because in programs using work stealing
the worker keeps taking tasks until the queue empties, so it
will eventually notice and echo the thief’s value.

Evaluation Modifying Intel’s Cilk Plus [3] runtime (which
is used by the C/C++ parallel extensions in Intel’s compilers)
to use FF-THE and THEP instead of THE improves the
running time of the benchmarks from Figure 1 by 11%−
15% on average (and by up to 23%) on Intel Westmere-
EX and Haswell processors. In addition, FF-CL outperforms
the Chase-Lev algorithm by 17% on average on common
graph problems, achieving performance comparable to that
of Michael et al.’s idempotent work stealing queues [31],
which are fence-free but can dequeue a task more than once.

Sidestepping the laws of order Our algorithms violate a
tightness assumption of the “laws of order” impossibility
result [10], namely that every legal sequential execution
can actually occur in the algorithm. In our algorithms, the
execution in which a thief running alone steals from a queue
containing one item cannot occur. FF-THE and FF-CL avoid
this execution by refusing to steal in such a state, whereas
in THEP the thief would wait for the worker and never
complete. (We discuss this in detail in § 6.)

In showing how the use of bounded reordering enables
circumventing the “laws of order” theorem by violating its
tightness assumption, we hope to open the door for removing
memory fences in other concurrent algorithms.

1.3 Contributions
To summarize, our contributions are:

• Introducing the bounded TSO memory model, showing
that it captures mainstream TSO processors, and describ-
ing how to measure reordering bounds in practice.

• The FF-THE, FF-CL and THEP work stealing algo-
rithms, which achieve fence-freedom by exploiting the
reordering bound.

• Describing how the use of bounded reordering enables
violating the “laws of order” tightness assumption.

• Implementation and evaluation of our fence-free work
stealing algorithms, showing they eliminate the overhead
of fences and outperform existing algorithms.



2. TSO[S]: Bounded TSO memory model
This section defines TSO[S], a bounded TSO memory model
in which a load can be reordered with at most S prior stores.
The model is defined via an abstract machine whose execu-
tion provides an operational explanation for observable pro-
gram behaviors under TSO[S]. In other words, any execution
on a real TSO[S] machine should produce the same read val-
ues and final memory state as some execution of the abstract
TSO[S] machine.

The abstract TSO[S] machine is essentially Sewell et al.’s
x86-TSO abstract machine [34] in which the store buffers
are bounded. We therefore describe the TSO[S] machine
informally, and refer the reader to Sewell et al.’s work [34]
for the full formal definitions.

Abstract TSO[S] machine The machine consists of a set
of threads that interact through a memory subsystem. Each
thread corresponds to an in-order stream of instructions.
The memory subsystem contains one FIFO store buffer per
thread, whose capacity – the number of stores it can hold –
is S. The memory subsystem is protected by a global fair
lock, which is used to model atomic read-modify-write in-
structions (e.g., compare-and-swap) as being performed
while holding the lock. (Elsewhere in this paper we simply
use atomic operations directly.) The execution of the ma-
chine is a sequence of events describing actions performed
by the memory subsystem and the threads, under the follow-
ing rules.

The following actions are possible only when the memory
subsystem lock is unlocked or held by thread T :

1. The memory subsystem can dequeue T ’s oldest entry
from T ’s store buffer and propagate it to memory. We
assume that each memory write is eventually propagated
from the relevant store buffer to the shared memory [34].

2. T can read. If T reads from an address for which a match-
ing store exists in its store buffer, the read returns the
newest corresponding value in the store buffer. Other-
wise, the read returns the value from memory.

3. T can acquire the lock if it does not already hold it.

4. T can release the lock if it holds the lock and its store
buffer is empty (if T wishes to release the lock while its
store buffer is not empty, the memory subsystem must
take steps propagating T ’s writes to memory until T ’s
store buffer empties).

The following are allowed at any time:

5. T can execute a fence if its store buffer is empty (sim-
ilarly to #4, the memory subsystem must take enough
steps to empty T ’s store buffer first).

6. T can write, enqueuing an entry to its store buffer, pro-
vided the store buffer is not full (if the store buffer is full,
the memory subsystem must first dequeue and propagate
at least one entry to memory, similarly to #4 and #5).

3. Work stealing
3.1 Work stealing sequential specification
A work stealing queue is a double-ended queue that supports
three methods: put(), take() and steal(). A put(y)
enqueues y to the tail of the queue. A take() applied to a
non-empty queue dequeues from its tail. A steal() applied
to a non-empty queue dequeues from its head. A take() or
steal() applied to an empty queue return EMPTY.

3.2 Background: work stealing synchronization
Modern work stealing algorithms [4, 9, 14, 20] strive to re-
duce the overhead experienced by workers performing the
computation [20], even at the cost of making steal opera-
tions more expensive. As a result, these algorithms have con-
verged on a similar design in which the worker uses a pro-
tocol based on the flag principle [23] to detect if a conflict
with a thief might exist. If so, the worker switches to a heav-
ier synchronization protocol to decide whether the worker or
thief gets the task.

Figure 2a shows the general design. The queue consists of
a (cyclic) array of W tasks with non-wrapping head and tail
indices, i.e., an index with value i points to element i mod W
of the tasks array. The head, H, points to the oldest task in the
queue. The tail, T , points to the first unused array element.
If T = H the queue is empty. (For simplicity, we omit details
of resizing the array if it becomes full.)

A worker performs a put() by storing the task at the
tail of the queue, and then incrementing T . The TSO model
guarantees that the store of the task and the subsequent store
incrementing T are not reordered.

To take() a task, the worker “raises its flag” by decre-
menting T from t + 1 to t, thereby publishing its intent to
take task t (i.e., the task pointed to by index t). It then reads
the head index H after issuing a memory fence to ensure that
reading H is not reordered before decrementing T .

If the worker observes that t > H, it can safely remove
task t from the queue, as it has verified there can be no
conflict for task t: when the tail update became globally
visible, thieves have announced intent to steal only tasks up
to H < t, which means that a new steal operation will observe
a queue that does not contain task t.

However, if the worker observes that t ≤ H there may be
a conflict with a thief. The algorithms differ in the synchro-
nization protocol used to handle such a conflict. In the fol-
lowing we continue with the description of each algorithm’s
protocol:

Cilk’s THE algorithm (Figure 2b) Cilk’s THE algorithm
uses a per-queue lock to synchronize between a worker and
a thief, and also to enforce mutual exclusion among thieves.
In case of a conflict on a task, the protocol picks the worker
as the winner.

A thief acquires the queue lock and then “raises its flag”
by incrementing the head index H from h to h+ 1, thereby



// shared variables
H : 64−bit int , initially 0
T : 64−bit int , initially 0
tasks : array of W work items

put( task ) {
t := T
tasks [ t mod W] := task
T := t+1
}

take () {
t := T − 1
T := t
fence ()
h := H
if ( t > h) {

// Thief will observe t and will not try
// to steal task t.
return tasks[ t mod W]
}
Synchronization protocol (worker side)

}

steal () {
Synchronization protocol (thief side)

}

1 take () {
2 Initial code (Figure 2a take()) goes here
3 if ( t < h) {
4 lock ()
5 if (H ≥ t + 1) {
6 T := t + 1
7 unlock()
8 return EMPTY
9 }

10 unlock()
11 }
12 return tasks[ t mod W]
13 }

15 steal () {
16 lock ()
17 h := H
18 H := h + 1
19 fence ()
20 if (h + 1 ≤ T) { // H ≤ T
21 ret := tasks [h mod W]
22 } else { // H > T
23 H := h
24 ret := EMPTY
25 }
26 unlock()
27 return ret
28 }

29 take () {
30 Initial code (Figure 2a take()) goes here
31 if ( t < h) {
32 T := h
33 return EMPTY
34 }
35 // t = h
36 T := h + 1
37 if (!CAS(&H, h, h+1))
38 return EMPTY
39 else
40 return tasks [ t mod W]
41 }

44 steal () {
45 while (true) {
46 h := H
47 t := T
48 if (h ≥ t)
49 return EMPTY
50 task := tasks [h mod W]
51 if (!CAS(&H, h, h+1)) // goto Line 45
52 continue
53 return task
54 }
55 }

(a) Algorithm outline. (b) Cilk THE [20]. (c) Chase-Lev [14].

Figure 2: Design of modern work stealing task queues. Both the Cilk THE and Chase-Lev algorithms use the flag principle to detect when
the worker and thief might contend for a task. They differ in the synchronization used to manage such a conflict.

publishing its intent to steal task h. It then issues a memory
fence before checking if H ≤ T . If so, the thief knows its in-
crement of H will be observed by any future worker and thus
the thief can safely steal task h. Otherwise (H > T ), there
are two possible cases: either the queue was empty (T = H)
when the thief arrived, or a worker has just published its in-
tent to take the same task (e.g., initially T = 1 and H = 0,
then the worker’s decrement and the thief’s increment cross,
leading to a state in which T = 0 and H = 1). Either way,
the thief restores H to its original value and aborts the steal
attempt.

This behavior makes it safe for a worker which (following
its decrement of T ) finds that T = H to take the task. The
remaining case, in which a worker observes T < H after its
decrement, is again caused either by an initially empty queue
or because of a concurrent steal attempt (which will abort).
The worker therefore acquires the queue lock and returns the
task or restores the queue to a consistent state if it was empty.

Chase-Lev algorithm (Figure 2c) The Chase-Lev non-
blocking [21] algorithm uses an atomic compare-and-swap
(CAS) operation to pick the winner in a conflict on a task. A
thief reads the queue’s head and tail, and if the queue is not
empty (i.e., T > H) the thief tries to atomically increment H
from h to h+1 using a CAS. If the CAS succeeds, the thief
has stolen the task.

To support this simple stealing protocol (and in contrast
to the THE algorithm) a worker must always increment H to

remove the last task. After decrementing T , if the worker
finds that T = H, it restores T to its original value and
attempts to take this last task by incrementing H with a CAS.
Otherwise (T < H) then the queue was initially empty or
a thief has concurrently incremented H. In either case, the
worker returns EMPTY after fixing the queue’s state by setting
T to H.

3.3 Linearizability of work stealing algorithms
The standard correctness condition for concurrent algo-
rithms is linearizability [24], which requires that a method
appears to take effect at some point in time during its execu-
tion. However, the Cilk THE and Chase-Lev work stealing
algorithms are not linearizable under TSO [30]. For exam-
ple, a put() may be delayed in the worker’s store buffer and
missed by a thief, causing a linearizability violation as the
following Chase-Lev execution shows:

initially, T = 0 and H = 0
worker thief

put() invoked
buffered tasks[0] := item
stores: T := 1

put() completes
steal() invoked
read H = 0, T = 0
return EMPTY
steal() completes



In practice, such linearizability violations do not affect
work stealing clients: The worker keeps dequeuing tasks un-
til the queue empties, and so either it or a steal() invoked
after the put()’s stores flush to memory will remove the
task. Therefore, while adding a fence before the put() com-
pletes fixes these violations [30], deployed work stealing im-
plementations do not do so.

Our fence-free algorithms have similar linearizability vi-
olations (and fix). We point this out to emphasize that these
fixable linearizability violations are shared by existing work
stealing algorithms, and are not the reason we circumvent
the “laws of order” theorem and obtain fence-freedom.

4. Fence-freedom by reasoning about
bounded reordering

This section derives our first technique for (worker) fence-
free work stealing. We use Cilk’s THE algorithm as a con-
crete running example, developing the FF-THE algorithm.
We apply the same principles to develop FF-CL, a fence-free
version of the Chase-Lev algorithm, in § 4.1.

The task queue we obtain does not comply with the orig-
inal (deterministic) work stealing specification (§ 3.1), but
with a relaxed non-deterministic specification in which a
steal() operation can non-deterministically return ABORT

without changing the state of the queue. We use non-
determinism because the condition under which a steal()

operation returns ABORT will be internal to the implementa-
tion and not part of the specification. Importantly, this relax-
ation does not impact the correctness of the work stealing’s
client (program), as it still maintains the task queue’s safety
and does not allow a task to be removed twice.

Task queue safety Once a thief makes its intent to steal
task h globally visible (by incrementing H and issuing a
fence), it needs to verify that the worker is not concurrently
trying to take the same task, i.e., that T > h. Knowing this
makes stealing task h safe: any subsequent take() attempt
will observe the updated queue head and not try to remove
task h without acquiring the lock. The standard THE proto-
col ensures that the thief observes T ’s exact value, so it can
compare T to h. But the point is that any method for answer-
ing the question “is T > h?” will do.

Bounding worker position The technique we propose is to
leverage the bounded store buffer capacity in the bounded
TSO model to deduce how far off the worker’s real position
is from the position read from memory by the thief.

Let S be the store buffer’s capacity. (We discuss how to
determine S in practice in § 7.) A worker take() does one
store to T which decrements it by 1. Therefore, at the time
at which a thief observes that T = t, the last value stored
by the worker must be at least t − S. So if t − S > h, the
thief can safely steal the task. Otherwise, it must return the
new ABORT value. More generally, a thief can safely steal
task h whenever it observes T > h + δ , where δ ≥ 1 is

56 steal () {
57 lock ()
58 h := H
59 H := h + 1
60 fence ()
61 if (T − δ> h) {
62 ret := tasks [h mod W]
63 } else {
64 H := h
65 ret := ABORT
66 }
67 unlock()
68 return ret
69 }

Figure 3: FF-THE: fence-free THE algorithm. The code of put()
and take() remains the same, but for the removal of the memory
fence in take(). The parameter δ is the maximum number of
stores to T by take() operations that can exist in the store buffer.

the maximum number of stores to T by take() operations
that can exist in the store buffer – which can also contain
stores executed by the client program in between task queue
operations. Thus, if we know that the client always does at
least x stores between consecutive take() operations, we
have

δ =

⌈
S

x+1

⌉
.

Figure 3 shows the modifications required to implement
reasoning about the worker’s store buffer in the THE al-
gorithm. Notice that now the thief never knows for certain
whether the queue is empty, because there is always uncer-
tainty about the final store performed by the worker (i.e.,
δ ≥ 1). Thus, the condition for returning ABORT subsumes
the condition for returning EMPTY in the original algorithm.

Determining δ To determine δ , we need to obtain a lower
bound on x, the number of stores between take()s. We
can easily get a bound by inspecting the runtime’s code.
For example, the CilkPlus runtime [3] updates a field in the
dequeued task after removing it from the queue. Thus, we
trivially have that x≥ 1 for any CilkPlus program.

To obtain a better bound, we can run a static analysis on
the basic block control-flow graph of the program and search
for a weighted shortest path from take() to itself, where we
assign the number of stores performed in a basic block B as
the weight of each edge going out of B.

Context switches The discussion thus far assumes the
worker always uses the same store buffer. This does not
hold if the operating system reschedules the worker thread,
moving it from one core to another. However, it is easy to
see that an operating system moving a thread from core C1
to core C2 must drain C1’s store buffer. For example, if the
thread loads from a location stored to on C1 while it runs on
C2, it must observe the value previously stored. Indeed, ven-
dor manuals document this requirement [6]. The discussion
in this section thus rightfully considers only the last core a
worker runs on.



4.1 FF-CL: Fence-free version of the Chase-Lev queue
The technique of bounding the worker’s position applies
to the Chase-Lev algorithm, but with a somewhat different
correctness argument. In the Chase-Lev algorithm a worker
about to remove the last task undoes its update of T and
uses CAS to advance the queue’s head. Thus, a thief about to
remove task h needs to verify that the worker’s store writing
T := h cannot be in the store buffer. If this is the case, the
thief is guaranteed that if the worker tries to remove task h,
it will synchronize with the thief using a CAS. As before,
checking that T > h+δ establishes this. Figure 4 shows the
pseudo code of the modified algorithm.

70 steal () {
71 while (true) {
72 h := H
73 t := T
74 if (h ≥ t)
75 return EMPTY
76 if ( t − δ ≤ h)
77 return ABORT
78 task := tasks [h mod W]
79 if (!CAS(&H, h, h+1)) // goto Line 71
80 continue
81 return task
82 }
83 }

Figure 4: FF-CL: fence-free Chase-Lev algorithm. The code of
put() and take() remains the same, but for the removal of the
memory fence in take().

5. Fence-free work stealing without relaxed
semantics

This section shows that work stealing can be implemented
fence-free without relaxing its semantics. We achieve this
by adding worker echoes to the FF-THE algorithm (§ 4) to
obtain the THEP algorithm, a fence-free implementation of
the standard work stealing specification. THEP also avoids
a potential problem in FF-THE, in which a thief misses a
stealing opportunity if it reads a true value of the queue’s
tail that happens to be within δ from the head. (Though in
some cases this may not be a real problem, since it means the
queue is almost empty and the worker can empty it soon.)

Echoes To safely steal, the thief needs to verify that the
worker has observed its update of H. To establish this, the
thief maintains a “heartbeat” counter which it increments on
each steal(). In turn, the worker writes the value it reads
from this counter to a new variable, P, allowing the thief to
wait for P to reflect its counter. (Hence, the name THEP of
the new algorithm.) TSO guarantees that any value the thief
subsequently reads from T was written by the worker after
it observed the thief’s update of H. The thief thus listens for
the worker’s “echo,” reflected in P, until it knows the worker
has observed its update of H.

84 // shared variables
85 H : struct { s:32 bits , h:32 bits }
86 P : initially ⊥
87 // T and tasks remain unchanged

89 take () {
90 t := T − 1
91 T := t
92 <s, h> := H
93 if ( t < h) {
94 lock ()
95 P := ⊥
96 <s, h> := H
97 if (h ≥ t + 1) {
98 T := t + 1
99 unlock()

100 return EMPTY
101 }
102 unlock()
103 } else {
104 P := s
105 }
106 return tasks [ t mod W]
107 }

108 steal () {
109 lock ()
110 <s, h> := H
111 H := <s + 1, h + 1>
112 fence ()
113 if (T − δ ≤ h) {
114 while (P 6= s+1) {
115 if (h+1 > T))
116 goto Line 122
117 }
118 t := T
119 if (h + 1 ≤ t) {
120 ret := tasks [h mod W]
121 } else {
122 H := <s + 1, h>
123 ret := EMPTY
124 }
125 } else {
126 ret := tasks [h mod W]
127 }
128 unlock()
129 return ret
130 }
131

Figure 5: The fence-free THEP algorithm. As before, δ ≥ 1 is the
maximum number of stores to T by take() operations that can
exist in the store buffer.

Using this approach yields an algorithm that meets the
original deterministic specification of work stealing (§ 3.1)
and never needs to abort a steal attempt. The price we pay
is that occasionally a thief must block and cannot make
progress until the worker arrives and updates P. Fortunately,
in clients using work stealing the worker keeps taking tasks
until the queue is empty, because it cannot rely on the work
being stolen. Thus, if the queue is not empty, the worker
eventually arrives and the thief can proceed.

However, we must make certain that the thief does not
have to wait when the queue is empty, because in that case
the worker may never arrive to respond. Therefore, if while
waiting the thief notices that T = H (the queue is empty) it
stops and returns EMPTY. (The thief can miss a buffered
put() and wrongly return EMPTY, resulting in a non-
linearizable execution of the same kind that already exists
in the THE algorithm, as described in § 3.3.)

The THEP algorithm (Figure 5) The thief maintains its
counter in the top bits of H. (The counter can also be main-
tained in a separate variable, at the cost of an extra load in
the take() path.) On each steal() attempt, the thief in-
crements the counter when it updates H. Then, if it is uncer-
tain about the worker’s position, it spins, reading T and P
until one of the following occurs: (1) If the queue becomes
empty (i.e., T <H which means T was equal to H before the
thief incremented H), the thief returns EMPTY (Lines 115-
116). (2) If P echoes back the updated counter value, the
thief reads T and proceeds as in the original THE algorithm
(Lines 118- 127).



THEP algorithm correctness The safety of the THEP al-
gorithm follows from the safety of the FF-THE variant (§ 4).
The remaining issue is whether waiting for a worker to arrive
while holding the queue lock can introduce deadlock. To see
why this cannot happen, notice that the worker tries to ac-
quire the queue’s lock if T < H. A waiting thief eventually
notices this and returns EMPTY, releasing the lock.

Why not use only echoes? We could still obtain a fence-
free algorithm by always blocking the thief until it sees the
worker’s echo. However, this would harm the load balancing
properties of the THE algorithm. For example, suppose there
is one worker whose queue contains W tasks of unit length,
and W −1 thieves. Then if thieves always block, completing
all tasks would take ≈W/2 time units whereas the origi-
nal THE takes one time unit. In contrast, reasoning about
the worker’s buffered stores allows a thief to steal without
blocking when the queue contains > δ tasks, enabling com-
pletion of all tasks in ≈ δ/2 time units.

Chase-Lev algorithm Unlike the THE algorithm, the Chase-
Lev algorithm is nonblocking [21]. In particular, a thief run-
ning alone always completes its operation. The echo method
is inherently blocking as it may prevent a thief from com-
pleting until the worker takes steps. It is thus not applicable
to the Chase-Lev algorithm since it would destroy its non-
blocking progress property.

6. Sidestepping the laws of order
Having described our fence-free algorithms, we now pin-
point how they get around Attiya et al.’s “laws of order”
impossibility result [10].

Impossibility result The “laws of order” theorem states
that any linearizable [24] implementation of a strongly non-
commutative (SNC) method must use an atomic operation or
memory fence 1 in some execution. The sequential specifica-
tion of the implemented data structure determines whether a
method is SNC. Method M is SNC if there is another method
M′ (possibly the same method as M) such that applying M
followed by M′ from some initial state ρ yields different out-
puts for both M and M′ than applying M′ followed by M.

take() and steal() are SNC Consider the state ρ in
which the work stealing task queue contains one task, x.
When applying take() first it returns x and a subsequent
steal() returns EMPTY. Similarly, if steal() is applied
first it returns x and then take() returns EMPTY when
applied. It is easy to see that ρ is the only state from which
take() and steal() can influence each other in this way.

1The actual theorem statement does not mention memory fences, as
it uses a sequentially consistent system model. Instead, the theorem states
that either an atomic operation or a read-after-write (RAW) pattern must be
used, where a RAW means a write to shared variable X is followed by a
read to another shared variable Y without a write to Y in between. However,
TSO requires issuing a memory fence after the write to X to prevent the
read of Y from being reordered before it.

Tightness assumption The “laws of order” proof assumes
that the concurrent implementation is tight – that any se-
quential execution which complies with the specification can
occur in a sequential execution of the implementation. (This
is referred to as “Assumption 1” in the paper [10].) The proof
needs this assumption to argue that an execution exhibiting
the strong non-commutativity of a method actually occurs in
the implementation. Our algorithms break the tightness as-
sumption.

Violating tightness by relaxing semantics The FF-THE
and FF-CL algorithms refuse to steal when the queue con-
tains one task, because there might be a take() of this task
hidden in worker’s store buffer. Instead, they return ABORT

without changing the state of the queue – which the standard
work stealing specification does not allow. Thus, reasoning
about the store buffer enables implementing a relaxed spec-
ification that allows steal() to run first from the ρ state
without affecting the return value of a later take().

Violating tightness by blocking In the THEP algorithm a
steal() invoked when the queue contains one task blocks
and does not return until take() is invoked. This prevents
the SNC execution in which steal() affects the return
value of take() from occurring without relaxing the work
stealing semantics, as the steal() would simply not termi-
nate when running alone. THEP sidesteps the impossibility
result by leveraging a property of work stealing clients (pro-
grams): that the worker keeps taking tasks until the queue
empties. Therefore, in actual work stealing clients, indefinite
blocking of a thief does not occur.

7. Bounded TSO in mainstream processors
Here we show that the mainstream TSO architectures – x86
and SPARC – implement bounded TSO, except for a cor-
ner case in which there are consecutive stores to the same
location, which can be prevented in software.

We use Intel’s Xeon E7-4870 (Westmere-EX) processor
as a running example, since it is representative of main-
stream out-of-order TSO processors. (Similar but simpler
reasoning applies to in-order processors.) First, we ex-
plain how the processor’s implementation of TSO leads to
bounded reordering except when consecutive stores to the
same location are coalesced (§ 7.1). Then we derive the
exact bound on the amount of reordering, and show how
to adjust the work stealing runtime to avoid store coalesc-
ing (§ 7.2-7.3).

7.1 Cause of bounded store/load reordering
To hide the latency of writing to the memory subsystem
(which may include resolving a cache miss) the processor re-
tires a store instruction from the reorder buffer without wait-
ing for its value to reach the memory subsystem (henceforth
simply “memory”). Instead, the processor holds the instruc-
tion’s target address and data in a store buffer entry, from



for S = 1,2, . . .
T0 = get cycle count()
repeat K times

store to location #1
store to location #2

...
store to location #S
long latency instruction sequence

T1 = get cycle count()

output
〈

S,
T1−T0

K

〉

Figure 6: Code for determining store buffer’s capacity.

which it moves the data to memory as a background task
once the store retires [2, 5, 6].

Store buffering makes store/load reordering possible be-
cause a load can retire, having read from memory, before the
value of an earlier store to a different location gets written to
memory. In fact, this is the only way reordering may happen.
Out-of-order execution does not lead to further store/load
reordering because, to maintain TSO, the processor retires
a load only if the value it read remains valid at retirement
time [5, 25].

The processor has a fixed number, S, of store buffer en-
tries. However, this does not automatically imply that it im-
plements a TSO[S] memory model, because the processor’s
store buffer is not equivalent to the store buffer of the ab-
stract TSO[S] machine. To show that the processor imple-
ments TSO[S], we need to show that a load instruction can-
not be reordered with more than S prior stores.

The reason for such bounded reordering is the implemen-
tation of store buffering, which assigns a store buffer entry
to a store when it enters the pipeline and prevents it from en-
tering the pipeline if the store buffer is full (i.e., all S entries
have not been written to memory) [2, 5, 6]. In such a case,
the entire execution stalls since later instructions also cannot
enter the pipeline as pipeline entry occurs in program order.

It thus appears that a load cannot be reordered past more
than S prior stores, conforming to the TSO[S] model. How-
ever, if the processor coalesces multiple stores to the same
location into one store buffer entry, then the S store buffer
entries will represent more than S stores and violate this rea-
soning. We ignore this issue for now and address it in § 7.3.

7.2 Measuring store buffer capacity
This section shows how to empirically determine the capac-
ity of the processor’s store buffer. The idea is to measure the
time it takes to complete sequences of stores of increasing
length, and find the spot at which execution starts to stall.

Measurement algorithm (Figure 6) We alternate between
issuing a sequence of stores and a sequence of non-memory
instructions whose execution latency is long enough to drain
the store buffer. As long as the length of the store sequence
does not exceed the store buffer capacity, both the execu-
tion of the stores and the flushing of their store buffer en-
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Figure 7: Measuring store buffer capacity on a Westmere-EX pro-
cessor which has a documented 32-entry store buffer.

tries occur in parallel to the execution of the non-memory in-
structions, due to out-of-order execution. Consequently, the
latency of the non-memory instruction sequence dominates
the entire execution time.

However, when the length of the store sequence exceeds
the store buffer capacity, the resulting stalls delay the subse-
quent instruction sequences from entering the pipeline and
increase execution time. Importantly, stalls in the k + 1-th
iteration do not overlap the execution of the non-memory
instructions in the k-th iteration, and so the stalls are not ab-
sorbed by the latency of the non-memory instructions and
affect every iteration. The reason is that stores in the k+1-th
sequence can start draining to memory only after all non-
memory instructions in the k-th sequence retire, since store
buffer entries are flushed post-retirement and instructions re-
tire in program order.

Figure 7 shows the results of running the measurement
algorithm on the Westmere-EX processor. Our measurement
results match Intel’ documented store buffer capacity for
this processor [5, 6]. Measurement results on a Haswell
processor are similarly accurate, correctly identifying the
documented capacity of 42 [5, 6].

7.3 From store buffer capacity to a reordering bound
Knowing the capacity of the processor’s store buffer does
not necessarily provide a bound on store/load reordering.
For example, if the processor coalesces multiple stores to
the same location into a single store buffer entry, the S store
buffer entries can represent more than S stores and thus allow
reordering beyond S prior stores. There may also be other
implementation issues that affect the reordering bound.

Therefore, we develop a litmus test that, given a presumed
bound S on the reordering, can be used to prove that the pro-
cessor violates the TSO[S] model. We can then gain confi-
dence that a processor implements TSO[S] if extensive test-
ing does not show a violation of the model, although testing
will never prove that the processor implements TSO[S].

The test program (Figure 9) runs a worker and thief who
concurrently try to empty an FF-THE queue (Figure 3) that
initially contains 512 tasks. The queue uses a user-supplied
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Figure 8: Testing if the processor implements TSO[S]. If S is the correct bound, executions on or above the line y = x should be correct.

Initially: initialize work stealing queue with 512 items .

worker
taken := 0
while (take () 6= EMPTY) {

taken := taken + 1
store to location #1
...
store to location #L
}

thief
stolen := 0
while ( steal () 6= ABORT) {

stolen := stolen + 1
}

Finally: if ( taken + stolen = 512) output CORRECT , else output INCORRECT

Figure 9: Program for finding executions not valid under a bounded
TSO model. We vary the δ parameter of our work stealing algo-
rithm and L, the number of stores performed by the worker.

value for δ (the maximum number of take()s not visible
in memory due to store buffering). The worker performs a
sequence of L stores to distinct locations between each in-
vocation of take(), where L is a program parameter. The
worker performs no other stores except for these and the sin-
gle store in take(). Therefore, if the processor implements
TSO[S], an execution with δ ≥

⌈ S
L+1

⌉
should always be cor-

rect – the total number of tasks removed by the worker and
the thief equals the initial size of the queue.

We run the litmus test using various values of L and δ .
For each pair (L,δ ), we perform 107 runs with each of the
following assignments of threads to cores: (1) default OS
placement, (2) both threads placed on hyperthreads of the
same core, and (3) each thread placed on a different core.

We interpret the litmus test results in light of a supposed
ordering bound S. For each α ∈ {1, . . . ,S} we consider all
pairs (L,δ ) such that

⌈ S
L+1

⌉
= α . If any run of such a pair is

incorrect, we consider the point (α,δ ) incorrect; otherwise,
we consider it correct. Figure 8a depicts the results when
S = 32, the processor’s store buffer capacity. Interestingly,
the processor fails to implement TSO[32], as demonstrated
by the incorrect executions when the maximum number of
stores between take() operations divides 32.

We instrumented the litmus test to understand these fail-
ures, and observed that when they occur there always ap-
pear to be 33 worker stores in flight and never more. There-
fore, we analyzed the litmus test data using S = 33 (Fig-
ure 8b). This time there is an almost perfect match with the
model, with one exception: when L = 0. In this case the only
stores the worker performs are to the tail of the work stealing
queue, T . The T variable is then always at the tail of the store
buffer, and in fact is the only store pending in the store buffer.
In such a case, the processor apparently coalesces stores.

Store buffer coalescing Coalescing under TSO can take
place only for consecutive stores, otherwise – as the follow-
ing example shows – the TSO guarantees may be violated:

initially A = B = 0
buffered A := 1 (earliest store)
stores: B := 1

A := 2 (latest store,
entering buffer)

If next A := 2 is coalesced with A := 1 and this entry is then
written to memory, another processor can now observe A= 2
while B = 0 which is illegal under TSO.

To understand the processor’s coalescing implementa-
tion, we repeat the store buffer capacity benchmark (Fig-
ure 6) using sequences of stores to the same location – and
still obtain the same results. This shows that coalesced stores
still get assigned distinct store buffer entries, so coalescing is
done at a later execution stage. We hypothesize that the old-
est store gets written to memory by first moving its address
and data into an additional buffer B, which frees its store
buffer entry, and then writing B to the memory subsystem.
If the oldest store is to the same address that B holds, B is
overwritten with its data, resulting in coalescing. Otherwise,
B is overwritten only after its data is written to memory.

Deriving the reordering bound of 33 Because B holds a
retired store’s data, it observably behaves as an additional
store buffer entry. Therefore, if we avoid store buffer coa-
lescing, we can assume we are running on a TSO[33] ma-



chine (since our concern is the observable store buffer ca-
pacity, i.e., the bound on the reordering). To avoid coalesc-
ing of stores by take() in work stealing, we need to prevent
consecutive invocations of take() with no store in between.
This is easy to do in practice: The CilkPlus take() already
writes to the structure of a removed task before returning
it, and thus avoids coalescing. Other runtimes can similarly
perform an extra store before returning from take(). Per-
forming an additional store generalizes to processors with
coarser coalescing granularity: for example, if a processor
coalesces stores to the same cache line, we need to write to
another cache line before returning from take().

8. Evaluation
This section evaluates the performance impact of apply-
ing our techniques in the THE and Chase-Lev work steal-
ing algorithms. In addition, we compare our techniques to
the idempotent work stealing queues of Michael et al. [31],
which avoid the worker’s memory fence at the cost of relax-
ing the queue’s safety by allowing a task to be removed more
than once. Thus, we seek to understand whether comparable
performance can be obtained without compromising safety.

Platform We run our experiments on Intel Haswell and
Westmere-EX processors. The Westmere-EX (Xeon E7-
4870) processor has 10 2.4 GHz cores, each multiplexing
2 hyperthreads. The Haswell (Core i7-4770) processor has
4 3.4 GHz cores, each with 2 hyperthreads. We measure a
reordering bound of S = 33 on the Westmere-EX and S = 43
on the Haswell (ignoring coalescing, which we avoid in soft-
ware; see § 7.3).

8.1 The FF-THE and THEP algorithms
We implement our techniques in Intel’s CilkPlus runtime
library (Build 3365, released on May 2013) which uses the
THE algorithm.

To understand the individual contribution of our meth-
ods, we evaluate both THEP and the FF-THE variant (§ 4)
which refuses to steal in case of uncertainty. By default, both
versions use a value of δ =

⌈ S
2

⌉
derived from the fact that

the CilkPlus runtime performs an additional store after each
take(). To measure the impact of δ , we also test δ = 4,
which we determine to be safe by accounting for the pro-
gram stores and compiler register spills between take()s in
the benchmark binaries. Finally, we benchmark THEP with
δ = ∞, i.e., with thieves always waiting for the worker.

Methodology We measure the running time of a set of 11
CilkPlus programs (Table 1), which have by now become
standard benchmarks in the literature on work stealing
and task parallel runtimes [7, 19, 20, 26, 28]. We use the
jemalloc [18] memory allocator to prevent program mem-
ory allocation from being a bottleneck (the runtime uses
its own memory allocator). Both runtime and programs are
compiled version 13.1.1 of Intel’s icc compiler. We run

Benchmark Description Input size
Fib Recursive Fibonacci 42
Jacobi Iterative mesh relaxation 1024×1024
QuickSort Recursive QuickSort 108

Matmul Matrix multiply 1024×1024
Integrate Recursively calculate 10000

area under a curve
knapsack Recursive branch-and- 32 items

bound knapsack solver
cholesky Cholesky factorization 4000×4000,

40000 nonzeros
Heat Heat diffusion simulation 4096×1024
LUD LU decomposition 1024×1024
strassen Strassen matrix multiply 4096×4096
fft Fast Fourier transform 226

Table 1: CilkPlus benchmark applications.

each program 10 times (except for knapsack, which we
run 50 times) and report the median run time, normalized
to the default CilkPlus run time, as well as 10-th and 90-th
percentiles.

Results Figure 10 shows the results using the maximum
level of parallelism on each platform without hyperthreading
(i.e., 10 threads on the Westmere-EX, one assigned to each
core, and 4 threads on the Haswell). Due to space constraints
we omit the figures depicting results with hyperthreading
enabled, but we summarize the findings below.

On the Westmere-EX (Figure 10a) the THEP algorithm
improves the run time on 8 of the benchmarks by up to
23% and by 11% on (geometric) average, and degrades the
remaining 3 programs by 3%. The average improvement
across the entire suite is by 7%. On the Haswell (Figure 10b),
the run time of 9 programs improves by up to 23% (13%
on average) and is not affected on the rest. The average
improvement over the entire suite is by 11%.

Varying δ does not significantly impact the performance
of the THEP variants on most programs, as stealing is in-
frequent enough that waiting for the worker does not make
much of a difference. However, for Heat on the Westmere-
EX introducing more stealing opportunities resolves the run
time degradation caused by THEP.

In contrast, FF-THE is very sensitive to δ . On 6 programs
the default δ prevents FF-THE from stealing altogether and
makes the programs run at single threaded speed. Decreas-
ing δ to a more precise value resolves the problem in all pro-
grams but LUD, showing that the ability to resolve a thief’s
uncertainty can be important.

When using hyperthreading the processor can sched-
ule one hyperthread when its sibling stalls due to a mem-
ory fence. Consequently, the improvements from avoiding
fences are reduced. On the Westmere-EX, the average im-
provement of programs that improve drops to 4% and is at
most 12%, while the degradation increases to 5%, yielding
an average improvement of 3.6% across the whole suite. The
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Figure 10: CilkPlus programs run time, normalized to the default CilkPlus runtime.

effect on the Haswell is similar, with overall improvement
dropping to 7% (and at most 12%).

8.2 FF-CL vs. idempotent work stealing queues
Here we compare FF-CL to Michael et al.’s idempotent work
stealing queues [31]. (Since our goal is not to evaluate how
well Chase-Lev does compared to THE, we do not test the
THE variants in these experiments.) We test the LIFO and
double-ended FIFO idempotent queues. The LIFO queue is a
stack in which both worker and thieves remove (possibly the
same) tasks from the top of the stack. In the double-ended
FIFO queue, the last task can be removed concurrently by
both the worker and a thief.

We use Michael et al.’s benchmark programs and inputs,
but we implement the idempotent task queues ourselves as
their code is not publicly available. (However, our perfor-
mance results match those of Michael et al. [31].) There are
two benchmarks, computing the transitive closure and the
spanning tree of a graph. The parallel algorithms used [15]
manage synchronization internally, because the same task
(e.g., “visit node u”) can inherently be repeated by differ-
ent threads (e.g., who are working on different neighbors of
u). We report results only for the transitive closure; spanning
tree results are similar.

The input graphs consists of: (1) a K-graph, which is a K-
regular graph in which each node is connected to K nodes,

(2) a random graph of n nodes and m edges, and (3) a two-
dimensional torus (grid).

We run the transitive closure program 10 times on each
input, using the maximum level of parallelism usable by the
workload, both with and without hyperthreading. For the K-
graph and random graph, this is the maximum parallelism
in the machine, but on the torus graph the programs do not
scale past 2 threads, so we report results from 2 threads.

Figure 11a depicts the Haswell results for the transitive
closure application with large inputs without hyperthread-
ing. (Due to space constraints, we omit hyperthreading and
Westmere-EX results, which are similar.) We show median,
10-th and 90-th percentile run times, normalized to the stan-
dard Chase-Lev algorithm.

All the fence-free work stealing queues obtain compara-
ble performance. The torus input enjoys the greatest im-
provement in running time, ≈ 33% for both our FF-CL and
the LIFO idempotent queue.

In contrast to the CilkPlus experiments (Figure 10), here
the default δ value does not prevent a thread from stealing.
This can be seen by observing the non-zero percent of stolen
work for our variant in Figure 11b.

Also apparent in Figure 11b is that the vast majority of
work is performed by the worker and not by thieves, thus
emphasizing the importance of removing overhead – e.g.,
the memory fence – from the worker’s code path.
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9. Related work
Fence-free work stealing task queues Michael et al.’s
idempotent work stealing algorithms [31] avoid worker
fences, but are only applicable to applications that can tol-
erate a task being executed twice, whereas our techniques
are relevant to any application on a bounded TSO proces-
sor. Kumar et al. [26] use yieldpoint mechanisms to stop
the worker at a known-safe location before stealing. Such
mechanisms are not available in unmanaged environments
such as C/C++, whereas our technique applies there. Dice et
al.’s asymmetric synchronization [16] can be used to elim-
inate memory fences in work stealing. However, this re-
quires heavyweight actions by the thief (e.g., suspending the
worker thread) whereas our approach is lightweight.

Eliminating fence penalty in hardware Below we de-
scribe microarchitectural designs that eliminate the penalty
of fences, thereby obviating the need for our fence-free tech-
niques. In contrast to all these proposals, our algorithms of-
fer an immediately usable software-only solution for main-
stream multicore architectures available today.

Speculative memory fences Store-wait-free processing [36]
and Invisifence [12] use speculation to eliminate the penalty
of memory fences. Instead of a fence stalling the processor
until all prior stores are written to memory, these designs ini-
tiate transactional memory [22] style speculative execution
which commits when all prior stores have been drained to
memory. However, this speculation may interact badly with
work stealing, as each time a thief reads the queue’s tail it
might abort the worker’s speculative execution, which can
contain several take()s.

Stalling fences only when needed In WeeFence [17] and
address-aware fences [29] a fence stalls the processor only
if a post-fence access is about to violate the memory model.
Thus, a steal attempt can stall the worker, whereas with our
techniques – which appear to be applicable to these designs
when fences are not used – steals do not affect the worker.

Multiple store buffers Singh et al. [35] propose to use
different store buffers for shared and private memory lo-
cations. Fences then only need to drain the shared-location
store buffer. However, the processor needs to distinguish be-
tween private and shared accesses, which requires compiler
and instruction set changes, or extending the hardware mem-
ory management unit and page table structures [35].

10. Conclusion and future work
This paper shows that mainstream TSO processors only al-
low bounded store/load reordering and that this can be ex-
ploited to derive fence-free work stealing algorithms. The
idea is that we can compensate for reading stale values from
memory by reasoning about the number of stores that are
hidden in the store buffer.

More generally, because our approach enables circum-
venting the recent “laws of order” impossibility result [10]
by violating its tightness assumption, we hope it opens the
door for removing memory fences in other concurrent algo-
rithms.

The notion of a memory model with bounded reorder-
ing raises several questions for future research. How does
bounded reordering extend to weaker memory models which
admit other forms of reordering beyond store/load? Do
mainstream implementations of weak memory models such
as PowerPC and ARM also exhibit forms of bounded re-
ordering? Finally, it will be interesting to explore microar-
chitectures that explicitly provide bounds on reordering.
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