
Brief Announcement: MultiLane - A Concurrent Blocking
Multiset

Dave Dice
Oracle Labs

dave.dice@oracle.com

Oleksandr Otenko
Oracle Corporation

oleksandr.otenko@oracle.com

ABSTRACT
We introduce an extremely simple transformation that allows com-
position of a more scalable concurrent blocking multiset, orbag,
from multiple “lanes” of a potentially less scalable underlying mul-
tiset. Our design disperses accesses over the various lanes, reduc-
ing contention and memory coherence hot spots. Implemented in
Java, for instance, we construct a multiset from multiple lanes of
java.util.concurrent.SynchronousQueue[9] that yields more than 8
times the aggregate throughput of a single instance ofSynchronousQueue
when run on a 64-way Sun Niagara-2 system with 16 producer
threads and 16 consumer threads. We experimented with vari-
ous queues fromjava.util.conconcurrentand found that in general
a MultiLane form will outperform its underlying counterpart.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Concurrency

General Terms
Performance, experiments, algorithms

Keywords
Concurrency, queues, bags, concurrent multisets, resource pools,
producer-consumer, message passing

1. INTRODUCTION
Concurrent multisets allowing multiple producers and multiple

consumers can implement message passing mechanisms or when
provisioned with elements representing resources they can be used
as concurrent resource pools. They are found with increasing fre-
quency in modern software. Our construct exposes blockingnon-
totaltake andput accessor methods.Take waits for an element
to become available and then removes and returns that element to
caller, whileput inserts a new element, respecting the collection’s
capacity bound, if any, by first stalling until the collection is not at
full capacity before adding the element. All of the JDK packages
mentioned above expose blockingtake andput operators except
ConcurrentLinkedQueue, which is based on Michael and Scott’s
classic non-blocking queue [8]. For that specific construct we em-
ulatetake andput by spinning onoffer andpoll.

A MultiLane collection has aput cursorand atake cursor, which
reflect the lanes to which arrivingput andtake operations will be
dispatched, and an array of lanes. Each lane, in turn, consists of an

Copyright is held by the author/owner(s).
SPAA’11,June 4–6, 2011, San Jose, California, USA.
ACM 978-1-4503-0743-7/11/06.

instance of an underlying blocking sub-collection.Put andtake
operations on a MultiLane collection will first increment the appro-
priate cursor. These are the only centralized read-write variables in
our algorithm and are accessed with a simple atomic fetch-and-add
primitive. Both cursors are initially 0. After advancing a cursor the
operation uses the cursor value to select a lane index and then in-
vokesput ortake, respectively on the underlying sub-collection.
Because of the disjunct between advancing the cursor and then ac-
cessing the sub-collection identified by the cursor value, our col-
lection are not FIFO even if the sub-collections happen to be. In
practice, however, many applications do not require FIFO ordering.
MultiLane multisets can be either unbounded or bounded depend-
ing on the underlying sub-collection. The progress properties of
the constituent lanes are not necessarily reflected in the aggregate
multilane collection.

A MultiLane collection is work-conserving if the underlying col-
lections are work-conserving. Specifically, we say a collection has
a surplus oftakes when the number oftake invocations on that
collection exceeds the number ofput operations. If we have a
surplus oftake operations on a MultiLane collection then the put
cursor will select a lane that itself has a surplus oftake operations,
facilitating the expeditious pairing ofput andtake operations.
Complementary statements hold for the take cursor. The general
approach is similar to that of a ring buffer, except that there are
no locks at the top level but only atomically updated cursors, and
the ring elements are themselves blocking concurrent collections
instead of storage locations.

The key benefits to our approach, as compared to existing col-
lections, are (a) reduced coherence traffic as we distribute opera-
tions over the lanes, and (b) by dispersing operations we lessen the
impact of critical sections or optimistic concurrent windows that
might exist within those underlying collections. Relatively simple
and less-scalable thread-safe collections can be easily composed
into scalable MultiLane collections. The atomically-accessed cur-
sor fields certainly constitute a coherence hot-spot and impediment
to ultimate scalability, but they appear to admit more scaling than
the centralized data in the underlying collections. Furthermore,
atomic fetch-and-add may confer performance advantages relative
to compare-and-swap [3].

We note too that a multilane semaphore can be readily constructed
from multiple lanes of potentially less scalable underlying semaphores.

2. RELATED WORK
The literature is rich with scalable concurrent queue algorithms.

Of late and of particular interest, Hendler et al. [5][6] show to
useflat combiningto construct scalable synchronous queues. Afek
et al. [2] introduce the concept ofQuasi-linearizabledata struc-
tures and use the concept to construct relaxed and highly scalable



queues. Most relevant to our work are the Elimination-Diffraction
trees (ED-Trees) of Afek et al. [1] that, like our approach, uses mul-
tiple sub-collections. Mellor-Crummey [7] and others [4][10] used
atomic fetch-and-φ to implement non-blocking queues but their al-
gorithms are more complex and require additional read-write ac-
cesses to central variables.

3. PERFORMANCE
In Figure 1 we report the performance of a microbenchmark that

runs a number of concurrent producer and consumer threads and
measures aggregate message throughput rates with varying multi-
set implementations. Data was collected on a single-socket T5120
UltraSPARC-T2TM“Niagara” system having 64 logical processors
and 8 cores. The UltraSPARC-T2 has only two pipelines per core,
so scaling above 16 threads is modest and arises only from memory-
level parallelism. The MultiLane forms were configured with 8
lanes. Interestingly, we see thatLinkedTransferQueueis faster than
its MultiLane counterpart with 16 producer threads and 4 consumer
threads. Further investigation showed that many messages were si-
multaneously in-flight under the MultiLane form, and that garbage
collection activity dominated the measurement interval. This be-
havior arises because the underlying collection is unbounded and
the underlying implementation allocates “container” nodes for each
message, illustrating a potential confounding factor if we have un-
bounded collections and producer-consumer rate imbalance. (Aug-
menting theLinkedTransferQueueinstances with semaphores to
create bounded sub-collections provided relief, and, despite the
overhead of the semaphores actually improved performance). Garbage
collection overhead was negligible in all the other reported runs. To
enable fair comparison, if the underlying form was bounded, as in
the case ofArrayBlockingQueue, we reduced the bound by a factor
of 8 for the MultiLane variation thereof, so the aggregate Multi-
Lane would have the same effective bound at 8 lanes.

Implementation 4P : 16C 16P : 4C 16P : 16C

Base MultiLane Base MultiLane Base MultiLane

ArrayBlockingQueue 509 653 1002 881 1017 11338
LinkedBlockingQueue 1312 4245 1183 4008 1123 10604
LinkedTransferQueue 6288 6737 6601 4425 5424 11376
ConcurrentLinkedQueue 2061 6404 3066 6326 1542 12134
SynchronousQueue 783 4945 671 5137 1177 9747

Table 1: Aggregate message throughput results shown in trans-
fers completed per millisecond with varying implementations
and producer:consumer ratios

4. REFERENCES
[1] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable

producer-consumer pools based on elimination-diffraction
trees. Euro-Par’10.
http://dx.doi.org/10.1007/978-3-642-15291-7_16.

[2] Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability:
Relaxed consistency for improved concurrency. PODC 2010.

[3] D. Dice.Dave Dice’s blog, 2011 (accessed Feb 15, 2011).
http://blogs.sun.com/dave/entry/atomic_fetch_and_add_vs.

[4] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic
techniques for the efficient coordination of very large
numbers of cooperating sequential processors.ACM Trans.
Program. Lang. Syst., 5:164–189, April 1983.

[5] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat
combining and the synchronization-parallelism tradeoff.
SPAA ’10. http://doi.acm.org/10.1145/1810479.1810540.

[6] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Scalable
flat-combining based synchronous queues. InDistributed
Computing. 2010.
http://dx.doi.org/10.1007/978-3-642-15763-9_8.

[7] J. M. Mellor-Crummey. Concurrent queues: Practical
fetch-and-φ algorithms. 1987. University of Rochester
Computer Science Technical Report # 229.

[8] M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms.
PODC ’96. http://doi.acm.org/10.1145/248052.248106.

[9] W. N. Scherer, III, D. Lea, and M. L. Scott. Scalable
synchronous queues.Commun. ACM, 52:100–111, May
2009.

[10] J. Wilson.Operating System Data structures for
Shared-Memory MIMD Machines with Fetch-and-Add, 1988.
PhD Dissertation, New York University.

APPENDIX

Listing 1: MultiLane Algorithm
1 public classMultiLane< T > {
2 // Implements a concurrent blocking multiset−− bag
3 // Transforms existing blocking multisets into multilane forms
4 // Exposes take() and put() accessor methods.
5
6 // Lanes: Array of underlying blocking concurrent collections ...
7 // Possible examples of sub−collection types include :
8 // ArrayBlockingQueue, LinkedBlockingQueue, LinkedTransferQueue,
9 // SynchronousQueue etc

10 // This particular example employs SynchronousQueue.
11 private final SynchronousQueue<T> [] Lanes;
12
13 // PutCursor and TakeCursor are write and read "cursors" that chase
14 // each other.
15 // These are the only central read−write variables in our algorithm.
16 // Invariant: the generated indices must follow the same trajectory
17 // The stream of indexes generated by PutCursor and TakeCursor does _not
18 // need to be strictly cyclic, and in fact will not be when the PutCursor
19 // and TakeCursor overflow and change sign. That’s benign.
20 // Progress property : obstruction within a lane impacts only that lane.
21 // Invariant: if there are any "written" lanes in the MultiLane collection then
22 // the lane identified by TakeCursor is written. "Written" means that the
23 // sub−collection at that specified lane has at least one available element,
24 // or that some arriving put() has advanced PutCursor and is poised to put()
25 // into that lane. Take() may thus pair−up promptly if put messages are
26 // available. Complementary invariants exist for readers.
27 // The general approach is similar to that of a ring buffer, except that
28 // there are no locks at the top level but only atomically updated cursors, and
29 // the ring elements are themselves blocking concurrent collections
30 private final AtomicInteger PutCursor =newAtomicInteger();
31 private final AtomicInteger TakeCursor =newAtomicInteger();
32
33 public MultiLane (int Width) {
34 // For brevity of explication require power−of−two Width value
35 // That allows efficient indexing of the form : Lanes[i & (Lanes.length−1)]
36 assert (Width & (Width−1)) == 0 && Width > 0 ;
37 Lanes = (SynchronousQueue< T >[])newSynchronousQueue[Width];
38 for (int i = 0; i < Width; i++ ) {
39 Lanes[i] =newSynchronousQueue<T>();
40 }
41 }
42
43 public void put (T v) {
44 final int curs = PutCursor.getAndIncrement() ;// atomic fetch−and−add
45 Lanes [curs & (Lanes.length−1)].put(v) ; // put() is blocking
46 }
47
48 public T take() {
49 final int curs = TakeCursor.getAndIncrement();// atomic fetch−and−add
50 return Lanes[curs & (Lanes.length−1)].take() ;// take() is blocking
51 }
52 }


